Câu hỏi:
Cho đa giác lồi có n cạnh \(\left( n\ge 4 \right)\), các đường chéo của đa giác cắt nhau tạo thành bao nhiêu giao điểm, biết rằng không có ba đường thẳng nào đồng quy.
Lời giải tham khảo:
Đáp án đúng: A
Nối 2 đỉnh bất kì của đa giác ta được số đoạn thẳng là \(C_{n}^{2}\) .
Trong số \(C_{n}^{2}\) đoạn thẳng đó bao gồm các đường chéo của đa giác và n cạnh của đa giác.
Suy ra số đường chéo của đa giác là: \(C_{n}^{2}-n=\frac{n!}{2!\left( n-2 \right)!}-n=\frac{n\left( n-1 \right)}{2}-n=\frac{{{n}^{2}}-3n}{2}.\)
Vì không có 3 đường chéo nào đồng quy nên cứ 2 đường chéo cắt nhau tạo ra 1 giao điểm. Vậy số giao điểm là \(C_{\frac{n\left( n-3 \right)}{2}}^{2}.\)
Chọn A.
ADSENSE
==================
Đề thi HK1 KHOI 11
Nhằm giúp các em thi HK1 lop 11, Học Trac Nghiem xin gửi đến các em BỘ Đề thi HK1 LOP 11. Trắc nghiệm bao gồm các câu hỏi bám sát kiến thức bài học lý thuyết với thời gian làm bài quy định sẽ giúp các em rèn luyện kỹ năng làm bài tập trắc nghiệm. Bên cạnh đó, mỗi câu hỏi trong Trắc nghiệm đều biên soạn các đáp án chi tiết rõ ràng và cụ thể để giúp các em đối chiếu kết quả sau khi làm Trắc nghiệm một cách dễ dàng. Mời các em cùng tham khảo nội dung bộ Trắc nghiệm bên trên.